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It is shown that the healthy and diseased human heart rate variability(HRV) possesses a hierarchical
structure of the She-Leveque(SL) form. This structure, first found in measurements in turbulent fluid flows,
implies further details in the HRV multifractal scaling. The potential of diagnosis is also discussed based on the
characteristics derived from the SL hierarchy.
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The heart beat interval in humans is known to exhibit
fluctuation which is referred to as heart rate variability
(HRV). Power spectrum analysis of the fluctuation revealed a
1/ f-like scaling [1]. Recent studies indicated that healthy
human HRV exhibits even higher complexity which can be
characterized by multifractal scaling[2,3,5]. In contrast,
HRV in the pathological state such as congestive heart failure
(CHF) exhibits more monofractal-like scaling[2]. The
change in the 1/f law of CHF HRV is consistent with this
result [4]. Such a multifractal-monofractal transition was
also reported in parasympathetic nervous system blockade
experiment[3]. Hence the manifestation of multifractal HRV
is indicative of the proper autonomic regulation of the heart
rate. Further studies revealed that the multifractal HRV has
properties analogous to those found in fluid turbulence[5].
However, there is little understanding beyond the phenom-
enological description of multifractal HRV.

In this paper, we exploit further the analogy of HRV to
fluid turbulence and show the existence of a hierarchical
structure in healthy and diseased HRV. This structure allows
us to model the multifractality of HRV and make conjecture
to the heart beat dynamics responsible for the multifractal
scaling. The hierarchy, first proposed by She and Leveque
(SL) to understand the statistical properties of turbulent fluid
flows, provides a successful framework to discuss and char-
acterize the deviation from Kolmogorov monofractal scaling
of the velocity fluctuations in fluid turbulence[6]. When ap-
plied to the study of HRV, the SL hierarchy provides a model
structure which possesses two advantages:(a) it simplifies
the functional description of the multiscaling by using a
maximum of only three parameters, and(b) it indicates pre-
dictive power for HRV scaling in a pathological physiologi-
cal state such as congestive heart failure. One immediate
suggestion is the potential use of this notion in applications
such as diagnosis.

The results presented in this work are based on an analy-
sis of the beat-to-beat(RR) interval recordings. The RR in-
terval(RRi) measures the time span of successive ventricular
contractions. The contraction results from the almost syn-
chronous depolarization of the cardiac cells, which reverses
the potential across the cell membrane. This event is picked
up in the electrocardiaogram(ECG) recording and RRi is
extracted from the time interval of successive peaks in the
ECG signal. Let the RRi berstd, wheret is the discrete beat
number, and its increment beDrstd=rst+td−rstd. The SL
hierarchy implies, for a range oft,

FSp+2std

Sp+1std
G = ApFSp+1std

Spstd
Gb

fS`stdg1−b. s1d

Here 0,b,1 is a parameter of the hierarchy,Ap a function
of p, Spstd=kuDrstdupl the pth order moment ofuDrstdu de-
noted as thepth order RRi structure function,S`std
; limp→`Sp+1std /Spstd andk·l denotes the statistical average.
SinceS`std is dominated by the statistics of largeDrstd, it
characterizes the largest amplitude fluctuations in HRV.
Moreover, given the empirical lawSpstd,t zspd in HRV [5],
the hierarchy(1) implies the scaling model[6]

zspd = h0p + Cs1 − b pd, s2d

whereh0 andC are two other parameters of the hierarchy. It
follows from Eqs.(1) and (2) that S`std,t h0. A nonlinear
functional dependence ofzspd on p indicates multifractal
scaling. Thus, the parameterb measures the degree of mul-
tifractality. In particular,b→1 leads to monofractal scaling.
In the multifractal description of fluid turbulence, the param-
eterC can be shown to be the codimension of the set of the
largest amplitude fluctuation of the flow[6]. Here we adopt
these ideas in fluid turbulence to interpret the meaning of the
parameterC in HRV: a smaller(larger) C generally implies a
larger(smaller) probability of the occurrence of large ampli-
tude fluctuations.

We follow the procedure developed in Ref.[7] to check
whether the RRi data possess a hierarchical structure of the
SL form. This approach is based on a scaling property im-
plied by the hierarchy which describes a power-law relation-
ship between the normalized structure functions:

Spstd

fSnstdgp/n
,H Sqstd

fSnstdgq/nJrnsp,qd

. s3d

Such a scaling property is known as generalized extended
self-similarity in fluid turbulence[8,9]. In the case of SL
hierarchy, the exponentsrnsp,qd depend only on the model
parameterb:

rnsp,qd =
ns1 − b pd − ps1 − bnd
ns1 − b qd − qs1 − bnd

. s4d

It follows that
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Drnsp + dp,qd = bdpDrnsp,qd −
dps1 − bnds1 − bdpd

ns1 − bqd − qs1 − bnd
,

s5d

whereDrnsp,qd;rnsp+dp,qd−rnsp,qd. One can then plot
Drnsp+dp,qd vs Drnsp,qd to check(5) and hence the valid-
ity of the SL hierarchy.

We use several databases to perform the calculations(3)
and (5) to study the validity of the hierarchy in HRV. The
first database(DB1) contains ten sets of daytime ambulatory
RRi recordings taken from healthy young adults[5]. The
second database(DB2) contains 18 sets of daytime normal
sinus rhythm RRi data downloaded from public domain[10].
The third database(DBCHF) contains 45 sets of data from
congestive heart failure patients downloaded from the same
public domain[10]. In our analysis, certain abnormal beat
patterns due to missed beat, improper triggering on ventricu-
lar repolarization(T wave) as well as depolarization(QRS
complex) are removed or modified. For example, two short
RRi’s due to triggering on theT wave are replaced by their
sum and a small number of alternate RRi’s lying significantly
outside the local data trend are interpolated. Those cases
showing excessive abnormal beat patterns caused mainly by
ectopic beats are discarded from the analysis to avoid com-
plication in the estimation ofSpstd. The resulting number of
data sets used in the analysis is 54, with 24 from healthy
objects and 30 from CHF patients[11].

Equation(3) is found to hold in both healthy and CHF
HRV. The exponentrnsp,qd is then estimated from(3) and

used in(5) to calculateDrnsp,qd. Typical Drnsp+dp,qd vs
Drnsp,qd plots are shown in Figs. 1(a) and 1(b). The ob-
served linear trend is consistent with Eq.(5). Hence, SL
hierarchy is compatible with the multifractal scaling in HRV.
From such plots, we estimate the value ofb from the slope
of the fitted straight line and verify that the intercept ob-
tained by substituting the estimatedb into Eq. (5) agrees
with the fitted value. We further check that the values ofb
obtained have no sensitive dependence on the choices ofq
andn [see Figs. 1(c) and 1(d)]. The results forb are shown
in Fig. 2(a). The values ofb from healthy HRV(DB1,DB2)
cluster in the range[0.6,0.9] while the values ofb from
DBCHF are generally larger due to more monofractal-like
scaling. Thosezspd showing less curvature are being charac-
terized by largerb values as seen in Figs. 1(a) and 1(b).

To gain insight of the hierarchy, She and Waymire(SW)
arrived at the hierarchy(1) using multiplicative random cas-
cade [12]. Their cascade consists of two dynamic compo-
nents. One is the basic component that generates the singular
dynamics over a continuum of scales. It can be shown that
this dynamical component gives rise to the scaling termh0p
in Eq. (2). The SW cascade contains an extra component,
which modulates the singular structure through the multipli-
cation of b in discrete steps[12]. It can be shown that this
modulating component contributes to the nonlinear term
Cs1−b pd in Eq. (2). Since RRirstd does not exist fort in
between heart beats from the ECG recording, continuous
scale invariance cannot be defined in HRV. This suggests a
dominant modulating component in the generation of the
multifractal scaling of HRV and a scaling model withh0

FIG. 1. Typical Drnsp+dp,qd
vs Drnsp,qd plots for (a) healthy
HRV and (b) CHF HRV with dp
=0.2. We usedq=1 andn=2 for
healthy HRV andq=0.8 and n
=1.2 for CHF HRV. The solid
lines are least-square fits and the
estimated values ofb are 0.74 and
0.95, respectively, for healthy and
CHF HRV. The insets show the
correspondingzspd. The curve in
(a) is also calculated using differ-
ent choices ofn and q: (c) n=2
and q=0.6,0.8,1.2,1,4 and(d) q
=1 andn=1.6,1.8,2,2.2,2.4(pa-
rameter increasing in the direction
of the arrow). A rather insensitive
dependence of the slopes on the
choices ofn andq is evident.
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,0. Equivalently, this implies a hierarchy with a
t-independentS`. SinceS` cannot be directly calculated, to
verify such a model we first rewrite Eq.(1) as

Spstd , fS`stdgpH Sqstd
S`stdqJmsp,qd

, s6d

wheremsp,qd;s1−b pd / s1−bqd [7]. We then form the quo-
tient of Eq. (6) at distinct values oft and t0, which, after
some algebra, yields

log2F S`std
S`st0dG

=
log2fSpstd/Spst0dg − msp,qdlog2fSqstd/Sqst0dg

p − qmsp,qd

; Fp,qst,t0d. s7d

Hence, Fp,qst ,t0d is independent ofp and q, and a
t-independentS`std implies a “constant”Fp,qst ,t0d over a
range of t and t0 values. Figure 3 showsFp,qst ,t0d for
healthy and CHF HRV for various values ofp at certain

choices ofq. The convergence ofFp,q for different p andq
values is verified. Moreover,Fp,q is consistent with zero for a
range oft showing that the conditionh0,0 can be statisti-
cally ascertained and thatzspd,Cs1−b pd. Given this,C is
obtained by averagingzspd / s1−b pd over a range ofp and its
result has been shown in Fig. 2(b). As shown in Fig. 4,C, as
a function of b, shows an increasing trend asb→1. This
functional relationship is consistent with the observations
h0,0 and thatzspd becomes almost proportional top asb
→1. It can also be inferred from the earlier experimental
studies, as we now explain.

Recall that the fractal dimensionDshd of the set with
a local scaling exponenth is related tozspd through a
Legendre transform

Dshd = minpfph+ d − zspdg, s8d

whered is the dimension of the embedding space. From Eq.
(2) and withh0<0, Dshd can be explicitly obtained as

FIG. 2. Estimated values for model parameters(a) b and(b) C.
Estimates from DB1 and DB2 for 24 healthy subjects are given in
circles and those from DBCHF for 30 congestive heart failure sub-
jects are given in squares. The upper end of the bars indicates the
value of the mean and the horizontal line above the bars shows the
value corresponding to the mean plus one standard deviation.

FIG. 3. Evidence oft-independentS`std. Fp,qst ,64d vs log2std,
for various values ofp (superimposed) and q=1.2,1.6,2,2.4,2.8
(from top to bottom, curves shifted for clarity). (a) A healthy subject
sp=0.2−5d and (b) a CHF patientsp=0.4−2.6d. The b needed in
the calculation ofmsp,qd [see Eq.(7)] is obtained from that esti-
mated by Eq.(5).
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Dshd = d − C + F1 + ln C + lnsln 1/bd
lns1/bd Gh −

h ln h

lns1/bd
. s9d

Let hp be the scaling exponent of the singular set with largest
dimension, i.e.,Dshpd is the maximum. For HRV,hp was
found to increase its value from the multifractal-like scaling
in a healthy state to the monofractal-like scaling in the dis-
eased and pathological states[2,3]. Using Eq.(9), hp is de-
rived explicitly as

hp = C lns1/bd. s10d

If C is constant,hp decreases as monofractal scaling is ap-
proached sb→1d, which contradicts what was observed
[2,3]. In order for hp to increase withb in the limit of b
→1 as observed,Csbd must diverge as 1/ lns1/bd. Indeed,
we find that the dependence ofC on b can be well described
by 0.2b / lns1/bd (Fig. 4). Thus we have the resulthp

,0.2b with hp increasing withb in accord with the experi-
mental observations[2,3]. Finally, the diverging behavior of
C asb→1 presents a more favorable condition for diagnosis

as explained below. The CHF HRV generally shows more
monofractal-like scaling withb value closer to 1. As a result,
the correspondingC value will be larger than those for the
healthy subjects[see also Fig. 2(b)]. Thus a large value ofC
would provide a good characteristic for a diagnosis of poten-
tial CHF. Indeed, as seen in Fig. 4,C values larger than 3 are
all from CHF patients. We discussed earlier that a larger
value of C generally implies a smaller probability of the
occurrence of large amplitude fluctuations. In this sense, our
work also indicates that the CHF HRV has simpler dynamics
than the healthy HRV.

In summary, we show that a hierarchical structure of the
SL form exists in the healthy and diseased human HRV. This
property allows us to model the multifractal HRV in terms of
only two parameters,C and b. Interestingly,C and b are
related by an empirical law captured in Fig. 4. This finding is
important for two reasons. First, the empirical law appears to
be universal and is capable of describing both healthy and
congestive heart failure data. Second, the divergence ofC as
b→1 implies potential in diagnosis of congestive heart fail-
ure using the hierarchical structure.

To find a model that is compatible with the current find-
ing, we adopted the SW cascade which leads to further
implications beyond the phenomenological description of
multifractal HRV scaling. It is known that biological regula-
tion relies on feedback control which in principle operates
additively. The modulating component of the SW cascade
has the effect of reducing the fluctuation of turbulent flow
(sinceb,1) which is similar to the effect of feedback con-
trol on stabilizing a physiological state in biological systems.
Hence the SW model might provide an example of how feed-
back can be integrated into an entirely multiplicative cascade
[5] in HRV modeling. Further experiments will be needed to
test and quantify these possibilities in more detailed physi-
ological terms.
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